On the stabilization of diffusion equations: Boundary observation and feedback
نویسندگان
چکیده
منابع مشابه
Boundary Feedback Stabilization of the Monodomain Equations
Boundary feedback control for a coupled nonlinear PDE-ODE system (in the two and three dimensional cases) is studied. Particular focus is put on the monodomain equations arising in the context of cardiac electrophysiology. Neumann as well as Dirichlet based boundary control laws are obtained by an algebraic operator Riccati equation associated with the linearized system. Local exponential stabi...
متن کاملBoundary feedback stabilization of Navier-Stokes equations
The aim of this work is to design an explicit finite dimensional boundary feedback controller for stabilizing the equilibrium solutions to Navier-Stokes equations on a bounded and open domain in R, under the assumption that the unstable eigenvalues of the Stokes-Oseen operator are semisimple. The form of the stabilizing feedback is related to that one in [V. Barbu, 2012, [1]]. In comparison to ...
متن کاملthe effect of audio-taped feedback and conferencing on efl students’ writing ability
: بازخورد یکی از جنبه ها ی ضروری هر دوره ی آموزشی نگارشی – زبانی انگلیسی می باشد که به زبان آموزان مهارت های مورد نیاز جهت بهبود توانایی نگارشی را می آموزد. این تحقیق، با استفاده از طرح پیش آزمون، پس آزمون، و پسا آزمون ، سعی دارد تا تأ?یر نوع بازخورد مدرس در کمک به زبان آموزان جهت بازنویسی نوشته هایشان رابررسی کند ، و آیا اینکه رابطه ای بین نوع بازخورد مدرس و توانایی زبان آموزان در تصحیح غلط ها...
Feedback Boundary Stabilization of the Two-Dimensional Navier--Stokes Equations
We study the exponential stabilization of the linearized Navier-Stokes equations around an unstable stationary solution, by means of a feedback boundary control, in dimension 2 or 3. The feedback law is determined by solving a Linear-Quadratic control problem. We do not assume that the normal component of the control is equal to zero. In that case the state equation, satisfied by the velocity f...
متن کاملLocal Boundary Feedback Stabilization of the Navier-Stokes Equations
We study the exponential stabilization of the linearized Navier-Stokes equations around an unstable stationary solution, by means of a feedback boundary control, in dimension 2 or 3. The feedback law is determined by solving a Linear-Quadratic control problem. We do not assume that the normal component of the control is equal to zero. In that case the state equation, satisfied by the velocity f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1984
ISSN: 0022-0396
DOI: 10.1016/0022-0396(84)90177-3